Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16799
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  6  7  8  [9]  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13718정성태8/27/20247432오류 유형: 921. Visual C++ - error C1083: Cannot open include file: 'float.h': No such file or directory [2]
13717정성태8/26/20247023VS.NET IDE: 192. Visual Studio 2022 - Windows XP / 2003용 C/C++ 프로젝트 빌드
13716정성태8/21/20246766C/C++: 167. Visual C++ - 윈도우 환경에서 _execv 동작 [1]
13715정성태8/19/20247380Linux: 78. 리눅스 C/C++ - 특정 버전의 glibc 빌드 (docker-glibc-builder)
13714정성태8/19/20246759닷넷: 2295. C# 12 - 기본 생성자(Primary constructors) (책 오타 수정) [3]
13713정성태8/16/20247482개발 환경 구성: 721. WSL 2에서의 Hyper-V Socket 연동
13712정성태8/14/20247224개발 환경 구성: 720. Synology NAS - docker 원격 제어를 위한 TCP 바인딩 추가
13711정성태8/13/20248074Linux: 77. C# / Linux - zombie process (defunct process) [1]파일 다운로드1
13710정성태8/8/20247999닷넷: 2294. C# 13 - (6) iterator 또는 비동기 메서드에서 ref와 unsafe 사용을 부분적으로 허용파일 다운로드1
13709정성태8/7/20247765닷넷: 2293. C# - safe/unsafe 문맥에 대한 C# 13의 (하위 호환을 깨는) 변화파일 다운로드1
13708정성태8/7/20247548개발 환경 구성: 719. ffmpeg / YoutubeExplode - mp4 동영상 파일로부터 Audio 파일 추출
13707정성태8/6/20247791닷넷: 2292. C# - 자식 프로세스의 출력이 4,096보다 많은 경우 Process.WaitForExit 호출 시 hang 현상파일 다운로드1
13706정성태8/5/20247895개발 환경 구성: 718. Hyper-V - 리눅스 VM에 새로운 디스크 추가
13705정성태8/4/20248166닷넷: 2291. C# 13 - (5) params 인자 타입으로 컬렉션 허용 [2]파일 다운로드1
13704정성태8/2/20248126닷넷: 2290. C# - 간이 dotnet-dump 프로그램 만들기파일 다운로드1
13703정성태8/1/20247450닷넷: 2289. "dotnet-dump ps" 명령어가 닷넷 프로세스를 찾는 방법
13702정성태7/31/20247860닷넷: 2288. Collection 식을 지원하는 사용자 정의 타입을 CollectionBuilder 특성으로 성능 보완파일 다운로드1
13701정성태7/30/20248129닷넷: 2287. C# 13 - (4) Indexer를 이용한 개체 초기화 구문에서 System.Index 연산자 허용파일 다운로드1
13700정성태7/29/20247746디버깅 기술: 200. DLL Export/Import의 Hint 의미
13699정성태7/27/20248251닷넷: 2286. C# 13 - (3) Monitor를 대체할 Lock 타입파일 다운로드1
13698정성태7/27/20248207닷넷: 2285. C# - async 메서드에서의 System.Threading.Lock 잠금 처리파일 다운로드1
13697정성태7/26/20247932닷넷: 2284. C# - async 메서드에서의 lock/Monitor.Enter/Exit 잠금 처리파일 다운로드1
13696정성태7/26/20247468오류 유형: 920. dotnet publish - error NETSDK1047: Assets file '...\obj\project.assets.json' doesn't have a target for '...'
13695정성태7/25/20247455닷넷: 2283. C# - Lock / Wait 상태에서도 STA COM 메서드 호출 처리파일 다운로드1
13694정성태7/25/20247919닷넷: 2282. C# - ASP.NET Core Web App의 Request 용량 상한값 (Kestrel, IIS)
13693정성태7/24/20247244개발 환경 구성: 717. Visual Studio - C# 프로젝트에서 레지스트리에 등록하지 않은 COM 개체 참조 및 사용 방법파일 다운로드1
1  2  3  4  5  6  7  8  [9]  10  11  12  13  14  15  ...