Microsoft MVP성태의 닷넷 이야기
Math: 47. GeoGebra 기하 (24) - 정다각형 [링크 복사], [링크+제목 복사],
조회: 20963
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

GeoGebra 기하 (24) - 정다각형

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번엔 정다각형을 작도해 보겠습니다. ^^

우선, 살짝 이상하지만 이각형에서 시작해 볼까요? ^^

이각형
; https://ko.wikipedia.org/wiki/%EC%9D%B4%EA%B0%81%ED%98%95

정이각형의 작도는 원의 중심을 지나는 선과 원 호의 교점을 잡으면 됩니다.

regular_n_polygon_1.png

이로부터 정사각형을 만들 수 있습니다. 각 변으로부터 이등분한 위치에 점을 잡고(Perpendicular Bisector) 연결만 하면 되기 때문입니다.

regular_n_polygon_2.png

다시 이로부터 각 변을 이등분해 연결하면 정팔각형을 만들 수 있습니다.

regular_n_polygon_3.png

이런 요령으로 정2n각형들을 작도할 수 있습니다.




정2n각형에서 정삼각형은 작도가 안 됩니다. 따라서 새롭게 작도해야 하는데요, 이건 예전에 해봤습니다.

GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형
; https://www.sysnet.pe.kr/2/0/11579

regular_n_polygon_4.png

역시 이것으로부터 각 변을 이등분하면 정육각형을 작도할 수 있습니다.

regular_n_polygon_5.png

따라서 정삼각형에서 시작하는 3 * 2n각형들을 작도할 수 있습니다.




또 다른 시작점으로 정5각형을 들 수 있습니다. 이건 좀 작도가 이전 것과 비교해 약간 복잡한데요. 우선, 원의 중심을 지나는 선과 그 선의 수직선(Perpendicular Line)을 작도합니다.

regular_n_polygon_6.png

이제 선분 AE의 중점을 잡고(Midpoint or Center), 그 중점과 점 D를 반지름으로 하는 원을 작도합니다.

regular_n_polygon_7.png

그럼 위에서와 같이 점 F를 중심으로 한 원과, 원 A의 중심을 지나는 선과의 교점 G를 구할 수 있습니다. 이제 다시 점 D를 중심으로, 선분 DG를 반지름으로 한 원을 그립니다.

regular_n_polygon_8.png

그럼, 위와 같이 점 H와 점 I의 위치를 결정할 수 있게 되고 점 D로부터 선을 연결하면 일단 정5각형의 두 변을 그릴 수 있게 됩니다. 정다각형의 특성상, 하나의 변이라도 길이를 구하면 게임은 끝난 것입니다. 이제부터는 선분 DH든지, 선분 DI든지 그 길이를 반지름으로 하는 원을 반복해서 그리면서 변의 길이를 잡아나가면 정 5각형을 작도할 수 있게 됩니다.

regular_n_polygon_9.png

정5각형을 그렸으니, 이제 또다시 각 변을 이등분하면 정십각형을 그릴 수 있습니다.

regular_n_polygon_10.png

따라서 정오각형에서 시작하는 5 * 2n각형들을 작도할 수 있습니다.




그러고 보니, 정오각형 관련해서 쓴 글이 2개 있군요. ^^

C# - 펜타그램(Pentagram) 그리기
; https://www.sysnet.pe.kr/2/0/1310

황금비율 증명
; https://www.sysnet.pe.kr/2/0/1312

저 글에서 "2. 황금비율을 공식으로 정리"에 보면, 결국 정오각형의 한 변의 길이는 다음과 같은 이차방정식이 됩니다.

x2 - x - 1 = 0

그리고 이에 대한 해는,

x1 = (1 + √5) / 2, 
x2 = (1 - √5) / 2

이고, 음의 해는 작도로써 부적절하므로 정오각형의 한 변의 길이는 (1 + √5) / 2가 됩니다. 정오각형이 작도가 가능하다는 것을 바로 이 방정식으로부터도 알 수 있습니다. 왜냐하면 (1 + √5) / 2 길이는 이전에 쓴 글에서,

GeoGebra 기하 (23) - sqrt(n) 제곱근
; https://www.sysnet.pe.kr/2/0/11603

작도 가능한 길이라고 증명했기 때문입니다. 이것을 달리 말하면, 해당 정다각형의 작도 가능 여부를 방정식으로 표현해 알 수 있다는 점입니다. 가령, 이제까지 정2각형, 정3각형, 정5각형을 기반으로 정다각형을 작도하는 방법을 알아봤는데, 이를 통해 다음과 같은 식의 정다각형들이 작도가 됩니다.

2,3,4,5,6,8,10,12,16,20,24,32,40,48,64,80,96,128,160,192,256,320,384,512,640,768,...

생각보다 많지 않습니다. 대체로 저 사이에 있는 것들(예: 7,9,11,13,.. 등)은 오랜 시간 동안 작도를 하기 위해 노력해 왔으나, 이후에 방정식을 통해 그것들이 작도 불가능함이 판명됐습니다. 재미있는 것은, 이렇게 방정식을 통해 증명이 되었는데도 불구하고 여전히 노력하는 사람들이 있다는 점입니다. ^^

참고로, 의외의 정다각형들이 작도가 된다는 것을 볼 수 있는데 가령 정17각형과 같은 것들은 (가우스에 의해 발견되어) 작도가 가능하다고 합니다. 그렇다면 당연히 정17각형을 기준으로 17 * 2n각형들은 작도가 가능해지는 것입니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  [137]  138  139  140  141  142  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1630정성태2/5/201422814개발 환경 구성: 216. Hyper-V에 올려진 윈도우 XP VM에서 24bit 컬러 및 ClearType 활성화하는 방법
1629정성태2/5/201432630개발 환경 구성: 215. DOS batch - 하나의 .bat 파일에서 다중 .bat 파일을 (비동기로) 실행하는 방법 [1]
1628정성태2/4/201433954Windows: 87. 윈도우 8.1에서 .NET 3.5 설치가 안된다면? [2]
1627정성태2/4/201429014개발 환경 구성: 214. SQL Server Reporting Services를 이용해 간단한 리포트 제작하는 방법
1626정성태2/4/201421030Windows: 86. 윈도우 8.1의 Skydrive 내용이 동기화가 안된다면?
1625정성태2/2/201428194.NET Framework: 422. C++과 C#의 Event 공유파일 다운로드1
1624정성태2/2/201423807.NET Framework: 421. ASP.NET에서 Server.CreateObject와 COM Interop 클래스 생성의 차이점
1623정성태2/1/201428552개발 환경 구성: 213. x86/x64별로 나뉘어진 어셈블리를 한 프로젝트에서 참조하는 방법 [1]파일 다운로드1
1622정성태1/31/201429028VC++: 74. 어떤 것을 쓰면 좋을까요? wvnsprintf, _vsnwprintf_s, StringCbVPrintfW [4]
1621정성태1/31/201420852.NET Framework: 420. 베트남의 11학년(한국의 고2)이 45분만에 푼다는 알고리즘 문제파일 다운로드1
1620정성태1/30/201430667.NET Framework: 419. C# - BigDecimal파일 다운로드1
1619정성태1/30/201427405VS.NET IDE: 85. T4를 이용한 INotifyPropertyChanged 코드 자동 생성파일 다운로드1
1618정성태1/29/201443106Linux: 2. 우분투에서 Active Directory 계정을 이용한 파일 공유
1617정성태1/29/201424231.NET Framework: 418. Thread.Abort 호출의 hang 현상 [1]
1616정성태1/29/201424909디버깅 기술: 63. windbg 디버깅 사례: AppDomain 간의 static 변수 사용으로 인한 crash
1615정성태1/29/201426856.NET Framework: 417. WPF WebBrowser 컨트롤에서 SHDocVw.IWebBrowser2 인터페이스를 구하는 방법 및 순수 WPF 웹 브라우저 컨트롤 소개
1614정성태1/29/201423803.NET Framework: 416. System.Net.Sockets.NetworkStream이 Thread-safe할까?파일 다운로드1
1613정성태1/29/201425813.NET Framework: 415. IIS 작업자 프로세스 재생(recycle)하는 방법 [1]
1612정성태1/29/201422580오류 유형: 219. IIS 500 Internal Server Error - Skydrive에 공유된 경우
1611정성태1/27/201453989.NET Framework: 414. C# - 컴퓨터에서 알아낼 수 있는 고윳값 정리 [3]파일 다운로드1
1610정성태1/26/201437921.NET Framework: 413. C# - chromiumembedded 사용 [11]파일 다운로드1
1609정성태1/26/201420960오류 유형: 218. wsDualHttpBinding + Windows Server 2003인 경우 발생하는 오류
1608정성태1/26/201426258.NET Framework: 412. HttpContext.Current를 통해 이해하는 CallContext와 ExecutionContext [4]
1607정성태1/26/201426182.NET Framework: 411. 유니코드의 "compatibility character"가 뭘까요? [4]파일 다운로드1
1606정성태1/25/201424279오류 유형: 217. 델 베뉴 스타일러스 관련 업데이트 오류 - 5830_Firmware_X267N_WN_1.0.4.1_A01.EXE
1605정성태1/23/201421132개발 환경 구성: 212. Visual Studio Online과 "Monaco" 서비스 연동
... 136  [137]  138  139  140  141  142  143  144  145  146  147  148  149  150  ...