Microsoft MVP성태의 닷넷 이야기
Math: 47. GeoGebra 기하 (24) - 정다각형 [링크 복사], [링크+제목 복사],
조회: 20971
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

GeoGebra 기하 (24) - 정다각형

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번엔 정다각형을 작도해 보겠습니다. ^^

우선, 살짝 이상하지만 이각형에서 시작해 볼까요? ^^

이각형
; https://ko.wikipedia.org/wiki/%EC%9D%B4%EA%B0%81%ED%98%95

정이각형의 작도는 원의 중심을 지나는 선과 원 호의 교점을 잡으면 됩니다.

regular_n_polygon_1.png

이로부터 정사각형을 만들 수 있습니다. 각 변으로부터 이등분한 위치에 점을 잡고(Perpendicular Bisector) 연결만 하면 되기 때문입니다.

regular_n_polygon_2.png

다시 이로부터 각 변을 이등분해 연결하면 정팔각형을 만들 수 있습니다.

regular_n_polygon_3.png

이런 요령으로 정2n각형들을 작도할 수 있습니다.




정2n각형에서 정삼각형은 작도가 안 됩니다. 따라서 새롭게 작도해야 하는데요, 이건 예전에 해봤습니다.

GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형
; https://www.sysnet.pe.kr/2/0/11579

regular_n_polygon_4.png

역시 이것으로부터 각 변을 이등분하면 정육각형을 작도할 수 있습니다.

regular_n_polygon_5.png

따라서 정삼각형에서 시작하는 3 * 2n각형들을 작도할 수 있습니다.




또 다른 시작점으로 정5각형을 들 수 있습니다. 이건 좀 작도가 이전 것과 비교해 약간 복잡한데요. 우선, 원의 중심을 지나는 선과 그 선의 수직선(Perpendicular Line)을 작도합니다.

regular_n_polygon_6.png

이제 선분 AE의 중점을 잡고(Midpoint or Center), 그 중점과 점 D를 반지름으로 하는 원을 작도합니다.

regular_n_polygon_7.png

그럼 위에서와 같이 점 F를 중심으로 한 원과, 원 A의 중심을 지나는 선과의 교점 G를 구할 수 있습니다. 이제 다시 점 D를 중심으로, 선분 DG를 반지름으로 한 원을 그립니다.

regular_n_polygon_8.png

그럼, 위와 같이 점 H와 점 I의 위치를 결정할 수 있게 되고 점 D로부터 선을 연결하면 일단 정5각형의 두 변을 그릴 수 있게 됩니다. 정다각형의 특성상, 하나의 변이라도 길이를 구하면 게임은 끝난 것입니다. 이제부터는 선분 DH든지, 선분 DI든지 그 길이를 반지름으로 하는 원을 반복해서 그리면서 변의 길이를 잡아나가면 정 5각형을 작도할 수 있게 됩니다.

regular_n_polygon_9.png

정5각형을 그렸으니, 이제 또다시 각 변을 이등분하면 정십각형을 그릴 수 있습니다.

regular_n_polygon_10.png

따라서 정오각형에서 시작하는 5 * 2n각형들을 작도할 수 있습니다.




그러고 보니, 정오각형 관련해서 쓴 글이 2개 있군요. ^^

C# - 펜타그램(Pentagram) 그리기
; https://www.sysnet.pe.kr/2/0/1310

황금비율 증명
; https://www.sysnet.pe.kr/2/0/1312

저 글에서 "2. 황금비율을 공식으로 정리"에 보면, 결국 정오각형의 한 변의 길이는 다음과 같은 이차방정식이 됩니다.

x2 - x - 1 = 0

그리고 이에 대한 해는,

x1 = (1 + √5) / 2, 
x2 = (1 - √5) / 2

이고, 음의 해는 작도로써 부적절하므로 정오각형의 한 변의 길이는 (1 + √5) / 2가 됩니다. 정오각형이 작도가 가능하다는 것을 바로 이 방정식으로부터도 알 수 있습니다. 왜냐하면 (1 + √5) / 2 길이는 이전에 쓴 글에서,

GeoGebra 기하 (23) - sqrt(n) 제곱근
; https://www.sysnet.pe.kr/2/0/11603

작도 가능한 길이라고 증명했기 때문입니다. 이것을 달리 말하면, 해당 정다각형의 작도 가능 여부를 방정식으로 표현해 알 수 있다는 점입니다. 가령, 이제까지 정2각형, 정3각형, 정5각형을 기반으로 정다각형을 작도하는 방법을 알아봤는데, 이를 통해 다음과 같은 식의 정다각형들이 작도가 됩니다.

2,3,4,5,6,8,10,12,16,20,24,32,40,48,64,80,96,128,160,192,256,320,384,512,640,768,...

생각보다 많지 않습니다. 대체로 저 사이에 있는 것들(예: 7,9,11,13,.. 등)은 오랜 시간 동안 작도를 하기 위해 노력해 왔으나, 이후에 방정식을 통해 그것들이 작도 불가능함이 판명됐습니다. 재미있는 것은, 이렇게 방정식을 통해 증명이 되었는데도 불구하고 여전히 노력하는 사람들이 있다는 점입니다. ^^

참고로, 의외의 정다각형들이 작도가 된다는 것을 볼 수 있는데 가령 정17각형과 같은 것들은 (가우스에 의해 발견되어) 작도가 가능하다고 합니다. 그렇다면 당연히 정17각형을 기준으로 17 * 2n각형들은 작도가 가능해지는 것입니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  [154]  155  156  157  158  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1203정성태12/21/201125587제니퍼 .NET: 18. MEF가 적용된 ASP.NET 웹 사이트를 제니퍼 닷넷으로 모니터링 해본 결과! [6]
1202정성태12/21/201126087오류 유형: 144. The database '...' cannot be opened because it is version 661.
1201정성태12/14/201141133디버깅 기술: 47. .NET Reflector를 이용한 "소스 코드가 없는" 어셈블리 디버깅 [4]
1200정성태12/11/201126968디버깅 기술: 46. Windbg 확장 DLL 만들기 (2) - Debugger Extension API 사용파일 다운로드1
1199정성태12/11/201128374VC++: 55. JNI DLL 컴파일 시 x86과 x64의 Export된 함수의 이름이 왜 다를까요? [2]파일 다운로드1
1198정성태12/9/201132195디버깅 기술: 45. Windbg 확장 DLL 만들기 (1) - 스레드를 강제 종료시키는 명령어 [2]파일 다운로드1
1197정성태12/9/201129966.NET Framework: 282. Shader 강좌와 함께 배워보는 XNA Framework (2) - RenderMonkey의 Shader/Model 파일 연동파일 다운로드2
1196정성태12/9/201133159.NET Framework: 281. Shader 강좌와 함께 배워보는 XNA Framework (1) - 기초 프로그램 구조 [3]파일 다운로드2
1195정성태12/8/201147802오류 유형: 143. DXSDK_Jun10.exe 설치 시 "Error Code: S1023" 오류 해결하는 방법 [4]
1194정성태12/8/201135585개발 환경 구성: 137. Visual C++ 런타임 구성요소에 대한 디버그 버전 설치하는 방법
1193정성태12/8/201122639오류 유형: 142. Windows Phone SDK 7.1 설치 시 Expression Blend 제거를 요구하는 경우
1192정성태12/8/201125669개발 환경 구성: 136. Windows 7 SP1의 IIS에서 사용자 프로파일을 로드하는 방법
1191정성태12/6/201126826.NET Framework: 280. MVC3에서 JavaScriptSerializer 재정의하는 방법파일 다운로드1
1190정성태12/6/201129991오류 유형: 141. Visual C++ 컴파일 오류 - error C2275: 'xxxxx' : illegal use of this type as an expression [1]
1189정성태12/6/201137060VS.NET IDE: 70. Visual Studio에서 프로젝트 로드가 안된다면?
1188정성태12/3/201126160개발 환경 구성: 135. 마이크로소프트 TFS 호스팅 서비스 - Preview [3]
1187정성태12/2/201130818개발 환경 구성: 134. Robocopy 오류 및 종료 코드
1186정성태12/1/201132682.NET Framework: 279. WPF - 그리기 성능 및 Blurring 문제파일 다운로드1
1185정성태11/29/201123404.NET Framework: 278. WPF - Content의 Changed 이벤트에 해당하는게 뭔가요?파일 다운로드1
1184정성태11/29/201126208.NET Framework: 277. F#과 WPF가 어울리지 못하는 근본적인 이유 [2]
1183정성태11/26/201121714오류 유형: 140. Visual Studio 2010 - Floating된 에디트 윈도우가 사라지지 않는 경우 [2]
1182정성태11/25/201157436.NET Framework: 276. 중복 없는 숫자를 랜덤으로 배열하는 방법 [5]파일 다운로드1
1181정성태11/24/201127922디버깅 기술: 44. windbg의 mscordacwks DLL 로드 문제
1180정성태11/23/201137707.NET Framework: 275. 레지스트리 등록 및 Interop DLL 없이 COM 개체 사용하는 방법 [2]파일 다운로드1
1179정성태11/22/201128289.NET Framework: 274. ReaderWriterLockSlim은 언제 쓰는 걸까요? [4]파일 다운로드1
1178정성태11/19/201124806.NET Framework: 273. 설치된 .NET 버전에 민감한 코드를 포함하는 경우, 다중으로 어셈블리를 만들어야 할까요?파일 다운로드1
... 151  152  153  [154]  155  156  157  158  159  160  161  162  163  164  165  ...