Microsoft MVP성태의 닷넷 이야기
Math: 47. GeoGebra 기하 (24) - 정다각형 [링크 복사], [링크+제목 복사],
조회: 23730
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

GeoGebra 기하 (24) - 정다각형

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번엔 정다각형을 작도해 보겠습니다. ^^

우선, 살짝 이상하지만 이각형에서 시작해 볼까요? ^^

이각형
; https://ko.wikipedia.org/wiki/%EC%9D%B4%EA%B0%81%ED%98%95

정이각형의 작도는 원의 중심을 지나는 선과 원 호의 교점을 잡으면 됩니다.

regular_n_polygon_1.png

이로부터 정사각형을 만들 수 있습니다. 각 변으로부터 이등분한 위치에 점을 잡고(Perpendicular Bisector) 연결만 하면 되기 때문입니다.

regular_n_polygon_2.png

다시 이로부터 각 변을 이등분해 연결하면 정팔각형을 만들 수 있습니다.

regular_n_polygon_3.png

이런 요령으로 정2n각형들을 작도할 수 있습니다.




정2n각형에서 정삼각형은 작도가 안 됩니다. 따라서 새롭게 작도해야 하는데요, 이건 예전에 해봤습니다.

GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형
; https://www.sysnet.pe.kr/2/0/11579

regular_n_polygon_4.png

역시 이것으로부터 각 변을 이등분하면 정육각형을 작도할 수 있습니다.

regular_n_polygon_5.png

따라서 정삼각형에서 시작하는 3 * 2n각형들을 작도할 수 있습니다.




또 다른 시작점으로 정5각형을 들 수 있습니다. 이건 좀 작도가 이전 것과 비교해 약간 복잡한데요. 우선, 원의 중심을 지나는 선과 그 선의 수직선(Perpendicular Line)을 작도합니다.

regular_n_polygon_6.png

이제 선분 AE의 중점을 잡고(Midpoint or Center), 그 중점과 점 D를 반지름으로 하는 원을 작도합니다.

regular_n_polygon_7.png

그럼 위에서와 같이 점 F를 중심으로 한 원과, 원 A의 중심을 지나는 선과의 교점 G를 구할 수 있습니다. 이제 다시 점 D를 중심으로, 선분 DG를 반지름으로 한 원을 그립니다.

regular_n_polygon_8.png

그럼, 위와 같이 점 H와 점 I의 위치를 결정할 수 있게 되고 점 D로부터 선을 연결하면 일단 정5각형의 두 변을 그릴 수 있게 됩니다. 정다각형의 특성상, 하나의 변이라도 길이를 구하면 게임은 끝난 것입니다. 이제부터는 선분 DH든지, 선분 DI든지 그 길이를 반지름으로 하는 원을 반복해서 그리면서 변의 길이를 잡아나가면 정 5각형을 작도할 수 있게 됩니다.

regular_n_polygon_9.png

정5각형을 그렸으니, 이제 또다시 각 변을 이등분하면 정십각형을 그릴 수 있습니다.

regular_n_polygon_10.png

따라서 정오각형에서 시작하는 5 * 2n각형들을 작도할 수 있습니다.




그러고 보니, 정오각형 관련해서 쓴 글이 2개 있군요. ^^

C# - 펜타그램(Pentagram) 그리기
; https://www.sysnet.pe.kr/2/0/1310

황금비율 증명
; https://www.sysnet.pe.kr/2/0/1312

저 글에서 "2. 황금비율을 공식으로 정리"에 보면, 결국 정오각형의 한 변의 길이는 다음과 같은 이차방정식이 됩니다.

x2 - x - 1 = 0

그리고 이에 대한 해는,

x1 = (1 + √5) / 2, 
x2 = (1 - √5) / 2

이고, 음의 해는 작도로써 부적절하므로 정오각형의 한 변의 길이는 (1 + √5) / 2가 됩니다. 정오각형이 작도가 가능하다는 것을 바로 이 방정식으로부터도 알 수 있습니다. 왜냐하면 (1 + √5) / 2 길이는 이전에 쓴 글에서,

GeoGebra 기하 (23) - sqrt(n) 제곱근
; https://www.sysnet.pe.kr/2/0/11603

작도 가능한 길이라고 증명했기 때문입니다. 이것을 달리 말하면, 해당 정다각형의 작도 가능 여부를 방정식으로 표현해 알 수 있다는 점입니다. 가령, 이제까지 정2각형, 정3각형, 정5각형을 기반으로 정다각형을 작도하는 방법을 알아봤는데, 이를 통해 다음과 같은 식의 정다각형들이 작도가 됩니다.

2,3,4,5,6,8,10,12,16,20,24,32,40,48,64,80,96,128,160,192,256,320,384,512,640,768,...

생각보다 많지 않습니다. 대체로 저 사이에 있는 것들(예: 7,9,11,13,.. 등)은 오랜 시간 동안 작도를 하기 위해 노력해 왔으나, 이후에 방정식을 통해 그것들이 작도 불가능함이 판명됐습니다. 재미있는 것은, 이렇게 방정식을 통해 증명이 되었는데도 불구하고 여전히 노력하는 사람들이 있다는 점입니다. ^^

참고로, 의외의 정다각형들이 작도가 된다는 것을 볼 수 있는데 가령 정17각형과 같은 것들은 (가우스에 의해 발견되어) 작도가 가능하다고 합니다. 그렇다면 당연히 정17각형을 기준으로 17 * 2n각형들은 작도가 가능해지는 것입니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13908정성태4/2/20255032닷넷: 2328. C# - MailKit: SMTP, POP3, IMAP 지원 라이브러리
13907정성태3/29/20255126VS.NET IDE: 198. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C# 프로젝트의 출력 경로 변경하기
13906정성태3/27/20255282닷넷: 2327. C# - 초기화되지 않은 메모리에 접근하는 버그?파일 다운로드1
13905정성태3/26/20255326Windows: 281. C++ - Windows / Critical Section의 안정화를 위해 도입된 "Keyed Event"파일 다운로드1
13904정성태3/25/20254377디버깅 기술: 218. Windbg로 살펴보는 Win32 Critical Section파일 다운로드1
13903정성태3/24/20253222VS.NET IDE: 197. (OneDrive, Dropbox 등의 공유 디렉터리에 있는) C++ 프로젝트의 출력 경로 변경하기
13902정성태3/24/20253953개발 환경 구성: 742. Oracle - 테스트용 hr 계정 및 데이터 생성파일 다운로드1
13901정성태3/9/20254303Windows: 280. Hyper-V의 3가지 Thread Scheduler (Classic, Core, Root)
13900정성태3/8/20255666스크립트: 72. 파이썬 - SQLAlchemy + oracledb 연동
13899정성태3/7/20253319스크립트: 71. 파이썬 - asyncio의 ContextVar 전달
13898정성태3/5/20254274오류 유형: 948. Visual Studio - Proxy Authentication Required: dotnetfeed.blob.core.windows.net
13897정성태3/5/20255525닷넷: 2326. C# - PowerShell과 연동하는 방법 (두 번째 이야기)파일 다운로드1
13896정성태3/5/20255261Windows: 279. Hyper-V Manager - VM 목록의 CPU Usage 항목이 항상 0%로 나오는 문제
13895정성태3/4/20255174Linux: 117. eBPF / bpf2go - Map에 추가된 요소의 개수를 확인하는 방법
13894정성태2/28/20254983Linux: 116. eBPF / bpf2go - BTF Style Maps 정의 구문과 데이터 정렬 문제
13893정성태2/27/20254244Linux: 115. eBPF (bpf2go) - ARRAY / HASH map 기본 사용법
13892정성태2/24/20256315닷넷: 2325. C# - PowerShell과 연동하는 방법파일 다운로드1
13891정성태2/23/20254497닷넷: 2324. C# - 프로세스의 성능 카운터용 인스턴스 이름을 구하는 방법파일 다운로드1
13890정성태2/21/20254114닷넷: 2323. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(Win32 API)파일 다운로드1
13889정성태2/20/20255940닷넷: 2322. C# - 프로세스 메모리 중 Private Working Set 크기를 구하는 방법(성능 카운터, WMI) [1]파일 다운로드1
13888정성태2/17/20254897닷넷: 2321. Blazor에서 발생할 수 있는 async void 메서드의 부작용
13887정성태2/17/20256741닷넷: 2320. Blazor의 razor 페이지에서 code-behind 파일로 코드를 분리 및 DI 사용법
13886정성태2/15/20254575VS.NET IDE: 196. Visual Studio - Code-behind처럼 cs 파일을 그룹핑하는 방법
13885정성태2/14/20256598닷넷: 2319. ASP.NET Core Web API / Razor 페이지에서 발생할 수 있는 async void 메서드의 부작용
13884정성태2/13/20256899닷넷: 2318. C# - (async Task가 아닌) async void 사용 시의 부작용파일 다운로드1
13883정성태2/12/20256631닷넷: 2317. C# - Memory Mapped I/O를 이용한 PCI Configuration Space 정보 열람파일 다운로드1
1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...