Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 26128
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1134정성태9/27/201131765.NET Framework: 241. C# 5.0에 새로 추가된 Caller Info 특성 [5]
1133정성태9/25/201135116VC++: 54. C++로 만든 WinRT 프로그램 [2]
1132정성태9/24/201174595Java: 9. 자바의 keytool.exe 사용법과 Tomcat의 SSL 통신 설정
1131정성태9/23/201130658Java: 8. 닷넷 개발자가 구현해 본 자바 웹 서비스 (2)
1130정성태9/23/201138893Java: 7. 닷넷 개발자가 구현해 본 자바 웹 서비스 (1)파일 다운로드2
1129정성태9/22/201130414개발 환경 구성: 130. Hyper-V에 MS-DOS VM 만드는 방법 - MSDN 구독자 대상 [3]
1128정성태9/20/201130732오류 유형: 137. KB2449742 보안 업데이트로 인한 충돌 문제 해결 - 두 번째 이야기
1127정성태9/19/201134587Java: 6. Java에서 MySQL 사용 [2]
1126정성태9/18/201129775Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)파일 다운로드1
1125정성태9/17/201127462Windows: 54. Windows 8 개발자 Preview를 사용해 보고... [2]
1124정성태9/17/201127842.NET Framework: 240. System.Collections.ArrayList가 .NET 4.5에서 지원이 안된다??? [2]
1123정성태9/17/201166718Windows: 53. 2가지 모드의 Internet Explorer 10과 ActiveX [6]
1122정성태9/16/201134352Windows: 52. 새롭게 지원되는 WinRT 응용 프로그램 [7]
1121정성태9/12/201129126Java: 5. WTP 내에서 서블릿을 실행하는 환경
1120정성태9/11/201129088.NET Framework: 239. IHttpHandler.IsReusable 속성 이야기파일 다운로드1
1119정성태9/11/201128063Java: 4. 이클립스에 WTP SDK가 설치되지 않는다면? [2]
1118정성태9/11/201139979Java: 3. 이클립스에서 서블릿 디버깅하는 방법 [4]
1117정성태9/9/201127094제니퍼 .NET: 17. 제니퍼 닷넷 적용 사례 (2) - 웹 애플리케이션 hang의 원인을 알려주다.
1116정성태9/8/201158679Java: 2. 자바에서 "Microsoft SQL Server JDBC Driver" 사용하는 방법
1115정성태9/4/201131744Java: 1. 닷넷 개발자가 처음 실습해 본 서블릿
1114정성태9/4/201136275Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201135890개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201152544Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201126744제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201128314오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
1109정성태8/26/201131125오류 유형: 135. 어느 순간 Active Directory 접속이 안되는 문제
... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...