Microsoft MVP성태의 닷넷 이야기
.NET Framework: 953. C# 9.0 - (6) 함수 포인터(Function pointers) [링크 복사], [링크+제목 복사],
조회: 23208
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 28개 있습니다.)

C# 9.0 - (6) 함수 포인터(Function pointers)

C# 9.0 - (1) 대상으로 형식화된 new 식(Target-typed new expressions)
; https://www.sysnet.pe.kr/2/0/12363

C# 9.0 - (2) localsinit 플래그 내보내기 무시(Suppress emitting localsinit flag)
; https://www.sysnet.pe.kr/2/0/12364

C# 9.0 - (3) 람다 메서드의 매개 변수 무시(Lambda discard parameters)
; https://www.sysnet.pe.kr/2/0/12365

C# 9.0 - (4) 원시 크기 정수(Native ints)
; https://www.sysnet.pe.kr/2/0/12366

C# 9.0 - (5) 로컬 함수에 특성 지정 가능(Attributes on local functions)
; https://www.sysnet.pe.kr/2/0/12372

C# 9.0 - (6) 함수 포인터(Function pointers)
; https://www.sysnet.pe.kr/2/0/12374

C# 9.0 - (7) 패턴 일치 개선 사항(Pattern matching enhancements)
; https://www.sysnet.pe.kr/2/0/12383

C# 9.0 - (8) 정적 익명 함수 (static anonymous functions)
; https://www.sysnet.pe.kr/2/0/12389

C# 9.0 - (9) 레코드 (Records)
; https://www.sysnet.pe.kr/2/0/12392

C# 9.0 - (10) 대상으로 형식화된 조건식(Target-typed conditional expressions)
; https://www.sysnet.pe.kr/2/0/12399

C# 9.0 - (11) 공변 반환 형식(Covariant return types)
; https://www.sysnet.pe.kr/2/0/12402

C# 9.0 - (12) foreach 루프에 대한 GetEnumerator 확장 메서드 지원(Extension GetEnumerator)
; https://www.sysnet.pe.kr/2/0/12403

C# 9.0 - (13) 모듈 이니셜라이저(Module initializers)
; https://www.sysnet.pe.kr/2/0/12404

C# 9.0 - (14) 부분 메서드에 대한 새로운 기능(New features for partial methods)
; https://www.sysnet.pe.kr/2/0/12405

C# 9.0 - (15) 최상위 문(Top-level statements)
; https://www.sysnet.pe.kr/2/0/12406

C# 9.0 - (16) 제약 조건이 없는 형식 매개변수 주석(Unconstrained type parameter annotations)
; https://www.sysnet.pe.kr/2/0/12423




지금까지는 Delegate가 함수 포인터의 역할을 대신해왔었습니다. 예를 들기 위해, Managed 메서드를 받는 코드를 보겠습니다.

class Program
{
    public delegate void WriteLineDelegate(string text);

    static unsafe void Main(string[] args)
    {
        WriteLineDelegate writeLineFunc = Program.WriteLine;
        writeLineFunc("test");
    }

    static void WriteLine(string text)
    {
        Console.WriteLine(text);
    }
}

이때 Delegate는 IL 코드의 ldftn 명령어를 이용해 다음과 같이 Program.WriteLine의 주소를 로드해 "native int" 타입으로 변환하고 그것을 WriteLineDelegate의 생성자에 전달하는 식으로 처리합니다. (만약 대상 메서드가 virtual이라면 ldvirtftn을 사용합니다.)

IL_0002: ldftn     void Program::WriteLine(string)
IL_0008: newobj    instance void Program/WriteLineDelegate::.ctor(object, native int)

반면, Native 메서드를 받는 경우라면 (DllImport를 사용해도 되겠지만) Marshal.GetDelegateForFunctionPointer를 이용해 역시나 Delegate로 변환해 사용할 수 있습니다.

using System;
using System.Runtime.InteropServices;

class Program
{
    [DllImport("kernel32", SetLastError = true, CharSet = CharSet.Unicode)]
    static extern IntPtr LoadLibrary(string lpFileName);

    [DllImport("kernel32", CharSet = CharSet.Ansi)]
    static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

    [UnmanagedFunctionPointer(CallingConvention.StdCall)]
    public delegate int SleepExDelegate(int milliseconds, bool bAlertable);

    static unsafe void Main(string[] args)
    {
        IntPtr ptrKernel = LoadLibrary("kernel32.dll");
        IntPtr ptrSleepEx = GetProcAddress(ptrKernel, "SleepEx");

        SleepExDelegate sleepExFunc = Marshal.GetDelegateForFunctionPointer(ptrSleepEx, typeof(SleepExDelegate)) as SleepExDelegate;

        Console.WriteLine(DateTime.Now);
        sleepExFunc(2000, false);
        Console.WriteLine(DateTime.Now);
    }
}

이 상황에서는 ldtoken을 이용해 Delegate로부터 RuntimeTypeHandle을 받아 ptrSleepEx의 주솟값을 변환하게 됩니다.

IL_003F: ldtoken   Program/SleepExDelegate
IL_0044: call      class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle(valuetype [mscorlib]System.RuntimeTypeHandle)
IL_0049: call      class [mscorlib]System.Delegate [mscorlib]System.Runtime.InteropServices.Marshal::GetDelegateForFunctionPointer(native int, class [mscorlib]System.Type)

결국, managed/unmanaged의 모든 호출은 System.Delegate 타입을 경유하므로 다소간의 성능 손실이 발생하게 됩니다.




C# 9.0에서는 이런 성능 손실과 함께 사용법도 간단하게 바꾼 Function Pointer 구문이 새롭게 제공됩니다. 가령, 위에서 예를 든 managed 메서드는 명시적인 Delegate 없이 다음과 같이 간단하게 처리할 수 있습니다.

class Program
{
    static unsafe void Main(string[] args)
    {
        delegate*<string, void> writeLineFunc = &Program.WriteLine; // ldftn void Program::WriteLine(string)
        writeLineFunc("test");
    }

    static void WriteLine(string text)
    {
        Console.WriteLine(text);
    }
}

또한 unmanaged 메서드의 처리도 마찬가지로 System.Delegate의 개입 없이 가능합니다.

using System;
using System.Runtime.InteropServices;

class Program
{
    [DllImport("kernel32", SetLastError = true, CharSet = CharSet.Unicode)]
    static extern IntPtr LoadLibrary(string lpFileName);

    [DllImport("kernel32", CharSet = CharSet.Ansi)]
    static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

    static unsafe void Main(string[] args)
    {
        IntPtr ptrKernel = LoadLibrary("kernel32.dll");
        IntPtr ptrSleepEx = GetProcAddress(ptrKernel, "SleepEx");

        // C# 9.0 RC
        // delegate* stdcall<int, bool, int> sleepExFunc = (delegate* stdcall<int, bool, int>)ptrSleepEx;

        // C# 9.0 정식 버전
        delegate* unmanaged[Stdcall]<int, bool, int> sleepExFunc = (delegate* unmanaged[Stdcall]<int, bool, int>)ptrSleepEx;

        Console.WriteLine(DateTime.Now);
        sleepExFunc(2000, false);
        Console.WriteLine(DateTime.Now);
    }
}

위에서 sleepExFunc 호출을 IL 코드로 보면, System.Delegate와 무관하게 해당 함수의 주소로 직접 호출하는 calli를 이용하는 것을 볼 수 있습니다.

IL_0097: ldloc.s   sleepExFunc
IL_0099: stloc.s   8
IL_009B: ldc.i4    2000
IL_00A0: ldc.i4.0
IL_00A1: ldloc.s   8
IL_00A3: calli     int (int32, bool)

보는 바와 같이 전체적으로 구문도 간단해졌고, 성능을 높일 수 있는 방식으로 바뀌었습니다.




C# 9.0의 함수 포인터 구문(delegate*)은 이렇게 관리/비관리 함수를 호출할 수 있는 구문을 제공하는데, 기본적으로 아무런 옵션을 지정하지 않으면,

delegate*<int, int, int> p1 = null;

이것은 managed 형식과 동일합니다.

delegate* managed<int, int, int> p1 = null;

비관리 함수 포인터 구문으로 넘어오면 약간 복잡해지는데, 호출 규약에 따라 cdecl, thiscall, stdcall로 나뉘므로,

// C# 9.0 RC
// delegate* stdcall<int, int, int> p3 = null;
// delegate* thiscall<int, int, int> p4 = null;
// delegate* cdecl<int, int, int> p5 = null;

// C# 9.0 정식 버전
delegate* unmanaged[Stdcall]<int, int, int> p3 = null;
delegate* unmanaged[Thiscall]<int, int, int> p4 = null;
delegate* unmanaged[Cdecl]<int, int, int> p5 = null;
delegate* unmanaged[Fastcall]<int, int, int> p6 = null;

대상 함수의 호출 규약을 파악해 맞춰주시면 됩니다.

(cs9_function_pointer_sample.zip 파일은 위에서 설명한 예제 코드를 포함합니다.)




참고로, calli에 대해서는 예전에도 한 번 소개한 적이 있습니다.

OpenCover 코드 커버리지 도구의 동작방식을 통해 살펴보는 Calli IL 코드 사용법
; https://www.sysnet.pe.kr/2/0/2882

물론, C# 언어의 기본 문법만으로는 이런 호출이 불가능하고 단지 IL 수준에서 그 호출 형태를 살펴볼 수 있습니다.

L_0000: /* 02 */ ldarg.0                // 함수에 전달하는 인자 1개
L_0001: /* 21 */ ldc.i8 0x7ffa4f745ad0  // 함수의 주소
L_000a: /* 29 */ calli 0x11000eaf       // 함수의 signature를 담고 있는 메타데이터 토큰

위의 calli 사용은, 함수의 signature가 "0x11000eaf"로 식별되는 "0x7ffa4f745ad0" 주소의 함수를 호출하는 것을 보여줍니다. (그리고 "ldarg.0" 하나만 있는 걸로 봐서 해당 함수는 인자를 하나만 요구하는 것을 짐작게 합니다.)

C# 8.0 이전의 기본 문법으로는 calli 호출을 할 수 없지만, DynamicMethod를 이용한다면 calli 호출의 동적 메서드를 런타임에 만들 수 있습니다. 이에 대한 예제를 다음에서 찾아볼 수 있는데요,

calli IL 호출이 DllImport 호출보다 빠를까요?
; https://www.sysnet.pe.kr/2/0/10808

public class Class1
{
    [DllImport("Win32Project1.dll", EntryPoint = "fnWin32Project1")]
    static extern long GetThisThreadId32();

    static GetThisThreadIdDelegate _GetThisThreadIdMethod = null;
    delegate int GetThisThreadIdDelegate();

    static Class1()
    {
        long result = 0;

        if (_GetThisThreadIdMethod == null)
        {
            if (IntPtr.Size == 4)
            {
                result = GetThisThreadId32(); // result == C++ DLL에서 반환하는 GetCurrentThreadId Win23 API의 주소
            }

            var type = typeof(Class1);
            DynamicMethod dynamicMethod = new DynamicMethod("", typeof(int), Type.EmptyTypes, type, true);

            var iLGenerator = dynamicMethod.GetILGenerator();

            if (IntPtr.Size == 4)
            {
                iLGenerator.Emit(OpCodes.Ldc_I4, (int)result);
            }
            else
            {
                iLGenerator.Emit(OpCodes.Ldc_I8, result);
            }

            iLGenerator.EmitCalli(OpCodes.Calli, CallingConvention.StdCall, typeof(int), Type.EmptyTypes);
            iLGenerator.Emit(OpCodes.Ret);

            GetThisThreadIdDelegate tempDelegate = dynamicMethod.CreateDelegate(typeof(GetThisThreadIdDelegate)) as GetThisThreadIdDelegate;
            _GetThisThreadIdMethod = tempDelegate;
        }
    }
}

꽤나 복잡한 저 절차를 이제 C# 9의 Function Pointer 구문에 따라 다음과 같이 간단하게 표현할 수 있습니다.

public unsafe class Class1
{
    static Class1()
    {
        if (_pFunc == null)
        {
            // C# 9.0 RC
            // _pFunc = (delegate* stdcall<int>)GetThisThreadId32();

            // C# 9.0 정식 버전
            _pFunc = (delegate* unmanaged[Stdcall]<int>)GetThisThreadId32();
        }
    }

    [DllImport("Win32Project1.dll", EntryPoint = "fnWin32Project1")]
    static extern long GetThisThreadId32();

    // C# 9.0 RC
    // static delegate* stdcall<int> _pFunc;

    // C# 9.0 정식 버전
    static delegate* unmanaged[Stdcall]<int> _pFunc;
}

또한, 위의 글에서 테스트했던 성능보다 더 향상된 것을 확인할 수 있습니다.

// x86 Release 빌드로 테스트 (낮을수록 좋음)

Calli : 598
BCL : 1386
DllImport : 1274

Calli : 606
BCL : 1447
DllImport : 1565

Calli : 591
BCL : 1340
DllImport : 1241

왜냐하면 (동일한 calli 호출이지만) DynamicMethod로 만든 경우 호출을 MulticastDelegate를 경유하는 반면, C# 9의 Function Pointer는 그 오버헤드도 없어졌기 때문입니다.

(cs9_function_pointer_perf.zip 파일은 성능 테스트 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 12/30/2022]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2020-11-22 02시08분
정성태

... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11584정성태7/5/201818215Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
11583정성태7/5/201817990.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
11582정성태7/5/201824629.NET Framework: 784. C# - 제네릭 인자를 가진 타입을 생성하는 방법 [1]파일 다운로드1
11581정성태7/4/201821348Math: 34. GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분파일 다운로드1
11580정성태7/4/201818108Math: 33. GeoGebra 기하 (10) - 직각의 3등분파일 다운로드1
11579정성태7/4/201817211Math: 32. GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형파일 다운로드1
11578정성태7/3/201817367Math: 31. GeoGebra 기하 (8) - 호(Arc)의 이등분파일 다운로드1
11577정성태7/3/201817296Math: 30. GeoGebra 기하 (7) - 각의 이등분파일 다운로드1
11576정성태7/3/201819478Math: 29. GeoGebra 기하 (6) - 대수의 4칙 연산파일 다운로드1
11575정성태7/2/201819907Math: 28. GeoGebra 기하 (5) - 선분을 n 등분하는 방법파일 다운로드1
11574정성태7/2/201818384Math: 27. GeoGebra 기하 (4) - 선분을 n 배 늘이는 방법파일 다운로드1
11573정성태7/2/201817745Math: 26. GeoGebra 기하 (3) - 평행선
11572정성태7/1/201817097.NET Framework: 783. C# 컴파일러가 허용하지 않는 (유효한) 코드를 컴파일해 테스트하는 방법
11571정성태7/1/201818552.NET Framework: 782. C# - JIRA에 등록된 Project의 Version 항목 추가하는 방법파일 다운로드1
11570정성태7/1/201818704Math: 25. GeoGebra 기하 (2) - 임의의 선분과 특정 점을 지나는 수직선파일 다운로드1
11569정성태7/1/201817902Math: 24. GeoGebra 기하 (1) - 수직 이등분선파일 다운로드1
11568정성태7/1/201830127Math: 23. GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램 [1]
11567정성태6/28/201819422.NET Framework: 781. C# - OpenCvSharp 사용 시 포인터를 이용한 속도 향상파일 다운로드1
11566정성태6/28/201825125.NET Framework: 780. C# - JIRA REST API 사용 정리 (1) Basic 인증 [4]파일 다운로드1
11565정성태6/28/201821973.NET Framework: 779. C# 7.3에서 enum을 boxing 없이 int로 변환하기 - 세 번째 이야기파일 다운로드1
11564정성태6/27/201820415.NET Framework: 778. (Unity가 사용하는) 모노 런타임의 __makeref 오류
11563정성태6/27/201819243개발 환경 구성: 386. .NET Framework Native compiler 프리뷰 버전 사용법 [2]
11562정성태6/26/201818733개발 환경 구성: 385. 레지스트리에 등록된 원격지 스크립트 COM 객체 실행 방법
11561정성태6/26/201830091.NET Framework: 777. UI 요소의 접근은 반드시 그 UI를 만든 스레드에서! [8]파일 다운로드1
11560정성태6/25/201821371.NET Framework: 776. C# 7.3 - 초기화 식에서 변수 사용 가능(expression variables in initializers)파일 다운로드1
11559정성태6/25/201828540개발 환경 구성: 384. 영문 설정의 Windows 10 명령행 창(cmd.exe)의 한글 지원 [6]
... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...