Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 17017
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  [138]  139  140  141  142  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1605정성태1/23/201421212개발 환경 구성: 212. Visual Studio Online과 "Monaco" 서비스 연동
1604정성태1/23/201421535오류 유형: 216. 윈도우 서버 백업 - Hyper-V 가상 머신이 백업되지 않는 경우 (2)
1603정성태1/23/201433606개발 환경 구성: 211. Hyper-V - Generation 2 유형의 VM 생성 시 ISO 부팅이 안된다면? [1]
1602정성태1/22/201423815디버깅 기술: 62. windbg - 사용자 모드 원격 디버깅
1601정성태1/22/201427428오류 유형: 215. windbg - Symbol file could not be found. Defaulted to export symbols
1600정성태1/19/201424082.NET Framework: 410. C# - 재귀호출을 스택 자료구조와 반복문을 이용해 대체하는 방법을 Paralle.For와 함께? [1]파일 다운로드1
1599정성태1/18/201432193.NET Framework: 409. C# - 재귀호출을 스택 자료구조와 반복문을 이용해 대체하는 방법 [1]파일 다운로드1
1598정성태1/17/201425517디버깅 기술: 61. NT 서비스 시작 단계에서 닷넷 메서드에 BP를 걸어 디버깅하는 방법
1597정성태1/17/201424111Phone: 9. Xamarin Android에 구글 AdMob 사용하는 방법 [1]
1596정성태1/17/201423045오류 유형: 214. Local SYSTEM 계정으로 실행된 IE에서 다운로드가 안 되는 문제
1595정성태1/16/201420042오류 유형: 213. attrib - Not resetting system file
1594정성태1/15/201422190오류 유형: 212. 마이크로소프트 라이브 계정 로그인 실패하는 경우
1593정성태1/14/201420820오류 유형: 211. ASP.NET 응용 프로그램을 IIS Express에서 디버깅할 때 "Requested registry access is not allowed" 오류 발생
1592정성태1/14/201421108오류 유형: 210. 2대의 AD가 있는 경우 도메인에 컴퓨터 추가를 실패한다면? [1]
1591정성태1/14/201423278오류 유형: 209. DebugDiag: Unable to find mscordacwks_x86_x86_[...version...].dll
1590정성태1/14/201423941오류 유형: 208. VSS Writer - NTDS 오류
1589정성태1/14/201432885Windows: 85. 컴퓨터를 껐는데도 어느 순간 자동으로 켜진다면? [2]
1588정성태1/14/201429674Windows: 84. 윈도우 7/8 - 메뉴 항목이 잔상으로 남는 문제
1587정성태1/14/201425580디버깅 기술: 60. NT 서비스가 시작하자마자 디버거를 연결시키는 방법 (2)
1586정성태1/14/201427297디버깅 기술: 59. NT 서비스가 시작하자마자 디버거를 연결시키는 방법 (1) [1]
1585정성태1/14/201430194VS.NET IDE: 84. Visual Studio를 이용한 파일 비교(diff)
1584정성태1/13/201432499Windows: 83. 윈도우 8 - UI가 있는 프로그램을 Local SYSTEM 권한의 세션 0 데스크톱에서 실행하는 방법
1583정성태1/13/201430501Windows: 82. 윈도우 8 - "Interactive Services Detection" 서비스 시작하는 방법 [1]
1582정성태1/12/201428962개발 환경 구성: 210. 원격 데스크톱(RDP) 접속 프로그램 - Royal TS [1]
1581정성태1/12/201430309.NET Framework: 408. 자바와 닷넷의 제네릭 차이점 - 중간 언어 및 공변/반공변 처리 [8]
1580정성태1/12/201440331.NET Framework: 407. 닷넷 사용자 정의 예외 클래스의 최소 구현 코드 [1]
... 136  137  [138]  139  140  141  142  143  144  145  146  147  148  149  150  ...