Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16946
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  [142]  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1504정성태9/24/201330277.NET Framework: 387. UDP 브로드캐스팅을 이용해 서비스 측의 IP 주소를 구하는 방법 [1]파일 다운로드1
1503정성태9/21/201335428개발 환경 구성: 199. Visual Studio - github 연동 [7]
1502정성태9/21/201339029개발 환경 구성: 198. Visual Studio - git을 이용한 로컬 소스 컨트롤
1501정성태9/21/201346122개발 환경 구성: 197. Visual Studio를 위한 Git 환경 설정 [5]
1500정성태9/20/201345094.NET Framework: 386. C# 버전의 한글 형태소 분석기 [1]파일 다운로드1
1499정성태9/20/201321686개발 환경 구성: 196. Windows Azure - Cloud Service의 인스턴스 타입 변경하는 방법
1498정성태9/20/201327803Windows: 76. 윈도우 8.1 / 서버 2012 R2 마이그레이션 [5]
1497정성태9/20/201360078웹: 28. IE 11로 바꾼 후 발생하는 문제 정리
1496정성태9/20/201332394Windows: 75. 윈도우 8.1, 2012 R2 설치 후 원격 접속이 안 되는 문제
1495정성태9/20/201323537웹: 27. IE 11 - YBM Sisa.com에서 검색된 영단어의 발음 기호가 안 나오는 문제
1494정성태9/13/201333121.NET Framework: 385. Html Agility Pack 소개 - 웹 문서에서 텍스트만 분리하는 방법 [2]파일 다운로드1
1493정성태9/13/201334911.NET Framework: 384. WebClient.DownloadString 문자열 인코딩 문제
1492정성태9/13/201322348오류 유형: 186. The .NET assembly 'Microsoft.Vsa' could not be found.
1491정성태9/9/201325471.NET Framework: 383. RSAParameters의 ToXmlString과 ExportParameters의 결과 비교
1490정성태9/7/201360475기타: 34. 도서: 시작하세요! C# 프로그래밍: 기본 문법부터 실전 예제까지 [7]
1489정성태9/4/201344914오류 유형: 185. 오피스 워드 파일이 저장되지 않는 문제 [2]
1488정성태8/27/201329053.NET Framework: 382. WCF에서 DataSet을 binary encoding으로 직렬화하는 방법파일 다운로드1
1487정성태8/27/201331361개발 환경 구성: 195. 로컬 PC에서의 WCF 통신을 Fiddler로 보는 방법 [1]
1486정성태8/27/201328860.NET Framework: 381. SqlCommand를 이용해 Microsoft SQL 서버의 쿼리 실행 계획을 구하는 방법파일 다운로드1
1485정성태8/26/201332556.NET Framework: 380. 프로세스 스스로 풀 덤프 남기는 방법 [3]파일 다운로드1
1484정성태8/23/201326807제니퍼 .NET: 24. 제니퍼 닷넷 적용 사례 (4) - GZIP 인코딩으로 인한 성능 하락
1483정성태8/23/201326925.NET Framework: 379. System.IO.MemoryStream, ArraySegment<T> 의 효율적인 사용법 [1]
1482정성태8/23/201320368.NET Framework: 378. Java / C# - 정수의 부호 유무에 따른 16진수 문자열 변환
1481정성태8/22/201321193오류 유형: 184. PaaS 유형(Cloud Services)의 Azure VM에 연결할 때 계정 만료 에러가 발생하는 경우
1480정성태8/22/201337863개발 환경 구성: 194. 윈도우 서버의 80 포트에 대한 port forwarding 설정 방법파일 다운로드1
1479정성태8/14/201325193오류 유형: 183. IIS - 바인딩 추가 시 Object reference not set to an instance of an object 오류 [5]
... 136  137  138  139  140  141  [142]  143  144  145  146  147  148  149  150  ...