Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16905
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  144  145  [146]  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1403정성태1/14/201331975.NET Framework: 357. .NET 4.5의 2GB 힙 한계 극복
1402정성태1/14/201332535오류 유형: 166. SmtpClient.Send 오류 - net_io_connectionclosed
1401정성태1/11/201329866.NET Framework: 356. (공개키를 담은) 자바의 key 파일을 닷넷의 RSACryptoServiceProvider에서 사용하는 방법 [2]파일 다운로드1
1400정성태1/10/201329009Windows: 69. 작업표시줄의 터치 키보드(Touch Keyboard) 없애는 방법 [3]
1399정성태1/9/201324642.NET Framework: 355. 닷넷 환경이 왜 C/C++보다 느릴까요? [8]
1398정성태1/8/201325084오류 유형: 165. 새로 설치한 Visual Studio 2010의 Team Explorer 실행시 비정상 종료가 된다면?
1397정성태1/3/201328569Windows: 68. 윈도우 설치 ISO 이미지를 USB 하드에 적용하는 방법 [2]
1396정성태12/27/201229796사물인터넷: 2. 넷두이노 - 4.2.0 펌웨어 업데이트 방법 [1]파일 다운로드1
1395정성태12/26/201220652.NET Framework: 354. x64 - AspCompat과 STA COM 개체가 성능에 미치는 영향
1394정성태12/25/201222087.NET Framework: 353. x86 - AspCompat과 STA COM 개체가 성능에 미치는 영향
1393정성태12/25/201222469.NET Framework: 352. x64에서 필수로 지정하도록 바뀐 STAThread 특성 [2]
1392정성태12/21/201232479사물인터넷: 1. .NET Micro Framework - 넷두이노 플러스 [7]
1391정성태12/21/201225873.NET Framework: 351. JavaScriptSerializer, DataContractJsonSerializer, Json.NET [3]파일 다운로드1
1390정성태12/20/201223929.NET Framework: 350. String 데이터를 Stream으로 변환하는 방법 [2]
1389정성태12/12/201222263.NET Framework: 349. .NET Thread 인스턴스로부터 COM Apartment 유형 확인하는 방법파일 다운로드1
1388정성태12/12/201223330.NET Framework: 348. .NET x64 응용 프로그램에서 Teb 주소를 구하는 방법파일 다운로드1
1387정성태12/12/201228237VC++: 64. x64 Visual C++에서 TEB 주소 구하는 방법
1386정성태12/12/201229947디버깅 기술: 53. windbg - 덤프 파일로부터 네이티브 DLL을 추출하는 방법 [1]
1385정성태12/12/201225030디버깅 기술: 52. Windbg - The version of SOS does not match the version of CLR you are debugging.
1384정성태12/12/201229862개발 환경 구성: 178. System32 폴더의 64비트 DLL을 32비트 Depends.exe에서 보는 방법
1383정성태12/10/201225763개발 환경 구성: 177. 기업용 메신저를 위한 Office Communicator Server 2007 설치 [1]
1382정성태12/8/201228626개발 환경 구성: 176. WebPagetest 서버 - 설치 및 테스트
1381정성태12/5/201227112.NET Framework: 347. C# - 프로세스(EXE) 수준의 Singleton 개체 생성 [2]파일 다운로드1
1380정성태11/28/201237145.NET Framework: 346. 닷넷 개발자에게 Node.js의 의미 [17]
1379정성태11/26/201230310.NET Framework: 345. C# 부호(+, -)에 대한 비트 변환
1378정성태11/22/201231618Java: 14. 안드로이드 - Hello World 실습 [7]
... 136  137  138  139  140  141  142  143  144  145  [146]  147  148  149  150  ...