Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16967
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  [65]  66  67  68  69  70  71  72  73  74  75  ...
NoWriterDateCnt.TitleFile(s)
12315정성태9/7/202019842개발 환경 구성: 510. Logstash - FileBeat을 이용한 IIS 로그 처리 [2]
12314정성태9/7/202020055오류 유형: 645. IIS HTTPERR - Timer_MinBytesPerSecond, Timer_ConnectionIdle 로그
12313정성태9/6/202019551개발 환경 구성: 509. Logstash - 사용자 정의 grok 패턴 추가를 이용한 IIS 로그 처리
12312정성태9/5/202026506개발 환경 구성: 508. Logstash 기본 사용법 [2]
12311정성태9/4/202019091.NET Framework: 937. C# - 간단하게 만들어 보는 리눅스의 nc(netcat), json_pp 프로그램 [1]
12310정성태9/3/202018405오류 유형: 644. Windows could not start the Elasticsearch 7.9.0 (elasticsearch-service-x64) service on Local Computer.
12309정성태9/3/202017584개발 환경 구성: 507. Elasticsearch 6.6부터 기본 추가된 한글 형태소 분석기 노리(nori) 사용법
12308정성태9/2/202019448개발 환경 구성: 506. Windows - 단일 머신에서 단일 바이너리로 여러 개의 ElasticSearch 노드를 실행하는 방법
12307정성태9/2/202020331오류 유형: 643. curl - json_parse_exception / Invalid UTF-8 start byte
12306정성태9/1/202017583오류 유형: 642. SQL Server 시작 오류 - error code 10013
12305정성태9/1/202019446Windows: 172. "Administered port exclusions"이 아닌 포트 범위 항목을 삭제하는 방법
12304정성태8/31/202017892개발 환경 구성: 505. 윈도우 - (네트워크 어댑터의 우선순위로 인한) 열거되는 IP 주소 순서를 조정하는 방법
12303정성태8/30/202018156개발 환경 구성: 504. ETW - 닷넷 프레임워크 기반의 응용 프로그램을 위한 명령행 도구 etrace 소개
12302정성태8/30/202018324.NET Framework: 936. C# - ETW 관련 Win32 API 사용 예제 코드 (5) - Private Logger파일 다운로드1
12301정성태8/30/202017865오류 유형: 641. error MSB4044: The "Fody.WeavingTask" task was not given a value for the required parameter "IntermediateDir".
12300정성태8/29/202018223.NET Framework: 935. C# - ETW 관련 Win32 API 사용 예제 코드 (4) CLR ETW Consumer파일 다운로드1
12299정성태8/27/202018864.NET Framework: 934. C# - ETW 관련 Win32 API 사용 예제 코드 (3) ETW Consumer 구현파일 다운로드1
12298정성태8/27/202018413오류 유형: 640. livekd - Could not resolve symbols for ntoskrnl.exe: MmPfnDatabase
12297정성태8/25/202017929개발 환경 구성: 503. SHA256 테스트 인증서 생성 방법
12296정성태8/24/202019086.NET Framework: 933. C# - ETW 관련 Win32 API 사용 예제 코드 (2) NT Kernel Logger파일 다운로드1
12295정성태8/24/202017926오류 유형: 639. Bitvise - Address is already in use; bind() in ListeningSocket::StartListening() failed: Windows error 10013: An attempt was made to access a socket ,,,
12293정성태8/24/202018870Windows: 171. "Administered port exclusions" 설명
12292정성태8/20/202021851.NET Framework: 932. C# - ETW 관련 Win32 API 사용 예제 코드 (1)파일 다운로드2
12291정성태8/15/202018779오류 유형: 638. error 1297: Device driver does not install on any devices, use primitive driver if this is intended.
12290정성태8/11/202020054.NET Framework: 931. C# - IP 주소에 따른 국가별 위치 확인 [8]파일 다운로드1
12289정성태8/6/202017002개발 환경 구성: 502. Portainer에 윈도우 컨테이너를 등록하는 방법
... 61  62  63  64  [65]  66  67  68  69  70  71  72  73  74  75  ...