Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16976
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  [70]  71  72  73  74  75  ...
NoWriterDateCnt.TitleFile(s)
12187정성태3/12/202015771오류 유형: 605. NtpClient was unable to set a manual peer to use as a time source because of duplicate error on '...'.
12186정성태3/12/202017530오류 유형: 604. The SysVol Permissions for one or more GPOs on this domain controller and not in sync with the permissions for the GPOs on the Baseline domain controller.
12185정성태3/11/202018167오류 유형: 603. The browser service was unable to retrieve a list of servers from the browser master...
12184정성태3/11/202020048오류 유형: 602. Automatic certificate enrollment for local system failed (0x800706ba) The RPC server is unavailable. [3]
12183정성태3/11/202017830오류 유형: 601. Warning: DsGetDcName returned information for \\[...], when we were trying to reach [...].
12182정성태3/11/202019306.NET Framework: 901. C# Windows Forms - Vista/7 이후의 Progress Bar 업데이트가 느린 문제파일 다운로드1
12181정성태3/11/202019609기타: 76. 재현 가능한 최소한의 예제 프로젝트란? - 두 번째 예제파일 다운로드1
12180정성태3/10/202016030오류 유형: 600. "Docker Desktop for Windows" - EXPOSE 포트가 LISTENING 되지 않는 문제
12179정성태3/10/202027759개발 환경 구성: 481. docker - PostgreSQL 컨테이너 실행
12178정성태3/10/202019868개발 환경 구성: 480. Linux 운영체제의 docker를 위한 tcp 바인딩 추가 [1]
12177정성태3/9/202019082개발 환경 구성: 479. docker - MySQL 컨테이너 실행
12176정성태3/9/202018611개발 환경 구성: 478. 파일의 (sha256 등의) 해시 값(checksum) 확인하는 방법
12175정성태3/8/202018662개발 환경 구성: 477. "Docker Desktop for Windows"의 "Linux Container" 모드를 위한 tcp 바인딩 추가
12174정성태3/7/202018046개발 환경 구성: 476. DockerDesktopVM의 파일 시스템 접근 [3]
12173정성태3/7/202019378개발 환경 구성: 475. docker - SQL Server 2019 컨테이너 실행 [1]
12172정성태3/7/202023883개발 환경 구성: 474. docker - container에서 root 권한 명령어 실행(sudo)
12171정성태3/6/202018993VS.NET IDE: 143. Visual Studio - ASP.NET Core Web Application의 "Enable Docker Support" 옵션으로 달라지는 점 [1]
12170정성태3/6/202017021오류 유형: 599. "Docker Desktop is switching..." 메시지와 DockerDesktopVM CPU 소비 현상
12169정성태3/5/202019567개발 환경 구성: 473. Windows nanoserver에 대한 docker pull의 태그 사용 [1]
12168정성태3/5/202020755개발 환경 구성: 472. 윈도우 환경에서의 dockerd.exe("Docker Engine" 서비스)가 Linux의 것과 다른 점
12167정성태3/5/202019167개발 환경 구성: 471. C# - 닷넷 응용 프로그램에서 DB2 Express-C 데이터베이스 사용 (3) - ibmcom/db2express-c 컨테이너 사용
12166정성태3/4/202019617개발 환경 구성: 470. Windows Server 컨테이너 - DockerMsftProvider 모듈을 이용한 docker 설치
12165정성태3/2/202018537.NET Framework: 900. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 네 번째 이야기(Monitor.Enter 후킹)파일 다운로드1
12164정성태2/29/202019621오류 유형: 598. Surface Pro 6 - Windows Hello Face Software Device가 인식이 안 되는 문제
12163정성태2/27/202017976.NET Framework: 899. 익명 함수를 가리키는 delegate 필드에 대한 직렬화 문제
12162정성태2/26/202021857디버깅 기술: 166. C#에서 만든 COM 객체를 C/C++로 P/Invoke Interop 시 메모리 누수(Memory Leak) 발생 [6]파일 다운로드2
... 61  62  63  64  65  66  67  68  69  [70]  71  72  73  74  75  ...