Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 10585
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...
NoWriterDateCnt.TitleFile(s)
11765정성태10/26/201812104개발 환경 구성: 420. Visual Studio Code - Arduino Board Manager를 이용한 사용자 정의 보드 선택
11764정성태10/26/201815719개발 환경 구성: 419. MIT 라이선스로 무료 공개된 Detours API 후킹 라이브러리 [2]
11763정성태10/25/201813659사물인터넷: 53. New NodeMcu v3(ESP8266)의 https 통신
11762정성태10/25/201814397사물인터넷: 52. New NodeMCU v3(ESP8266)의 http 통신파일 다운로드1
11761정성태10/25/201814064Graphics: 26. 임의 축을 기반으로 3D 벡터 회전파일 다운로드1
11760정성태10/24/201810535개발 환경 구성: 418. Azure - Runbook 내에서 또 다른 Runbook 스크립트를 실행
11759정성태10/24/201811233개발 환경 구성: 417. Azure - Runbook에서 사용할 수 있는 다양한 메서드를 위한 부가 Module 추가
11758정성태10/23/201813306.NET Framework: 800. C# - Azure REST API 사용을 위한 인증 획득 [3]파일 다운로드1
11757정성태10/19/201810781개발 환경 구성: 416. Visual Studio 2017을 이용한 아두이노 프로그램 개발(및 디버깅)
11756정성태10/19/201813065오류 유형: 500. Visual Studio Code의 아두이노 프로그램 개발 시 인텔리센스가 안 된다면?
11755정성태10/19/201814719오류 유형: 499. Visual Studio Code extension for Arduino - #include errors detected. [1]
11754정성태10/19/201811565개발 환경 구성: 415. Visual Studio Code를 이용한 아두이노 프로그램 개발 - 새 프로젝트
11753정성태10/19/201819015개발 환경 구성: 414. Visual Studio Code를 이용한 아두이노 프로그램 개발
11752정성태10/18/201811243오류 유형: 498. SQL 서버 - Database source is not a supported version of SQL Server
11751정성태10/18/201811379오류 유형: 497. Visual Studio 실행 시 그래픽이 투명해진다거나, 깨진다면?
11750정성태10/18/201810175오류 유형: 496. 비주얼 스튜디오 - One or more projects in the solution were not loaded correctly.
11749정성태10/18/201811596개발 환경 구성: 413. 비주얼 스튜디오에서 작성한 프로그램을 빌드하는 가장 쉬운 방법
11748정성태10/18/201812512개발 환경 구성: 412. Arduino IDE를 Store App으로 설치한 경우 컴파일만 되고 배포가 안 되는 문제
11747정성태10/17/201812672.NET Framework: 799. C# - DLL에도 EXE처럼 Main 메서드를 넣어 실행할 수 있도록 만드는 방법파일 다운로드1
11746정성태10/15/201811921개발 환경 구성: 411. Bitvise SSH Client의 인증서 모드에서 자동 로그인 방법파일 다운로드1
11745정성태10/15/201810480오류 유형: 495. TFS 파일/폴더 삭제 - The item [...] could not be found in your workspace, or you do not have permission to access it.
11744정성태10/15/201811081개발 환경 구성: 410. msbuild로 .pubxml 설정에 따른 배포 파일을 만드는 방법
11743정성태10/15/201811739웹: 37. Bootstrap의 dl/dt/dd 조합에서 문자열이 잘리지 않도록 CSS 설정
11742정성태10/15/201817392스크립트: 13. 윈도우 배치(Batch) 스크립트에서 날짜/시간 문자열을 구하는 방법
11741정성태10/15/201811763Phone: 13. Android - LinearLayout 간략 설명
11740정성태10/15/201813989사물인터넷: 51. Synology NAS(DS216+II)를 이용한 원격 컴퓨터의 전원 스위치 제어
... 61  62  63  64  65  66  67  68  69  70  71  72  73  74  [75]  ...