Microsoft MVP성태의 닷넷 이야기
Math: 23. GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램 [링크 복사], [링크+제목 복사],
조회: 30110
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
 
(연관된 글이 25개 있습니다.)

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램

지오지브라 수학 앱이란 것이 있습니다.

지오지브라 수학 앱
; https://www.geogebra.org/

이 중에서 "기하" 앱이 있는데 요게 ^^ 은근히 재미있습니다. 대수학과 관련한 책을 읽다 보면 컴퍼스와 자를 이용한 작도가 나오곤 하는데, 그럴 때 위의 링크를 방문해 "기하" 응용 프로그램을 다운로드하면 컴퓨터로 직접 실습해가며 책을 읽을 수 있습니다. ^^

처음 시작하면 "Basic Tools"만 도구 상자에 보이는데, "MORE" 버튼을 눌러 (2번까지) 확장하면 "Edit", "Construct", "Measure", "Points", "Lines", "Circles", "Polygons", "Conics", "Transform", "Media", "Others" 범주의 기능을 선택할 수 있습니다.

geogebra_intro_1.png

도구를 이용해 그리다 보면,

geogebra_intro_2.png

"Steps" 보기로 전환해 따라온 절차를 확인하는 것도 가능합니다.

geogebra_intro_3.png

Point A
Point B
f = Segment A, B
c = Circle through A with center B

그리고, 위의 왼쪽에 있는 동그라미를 눌러 특정 기하 요소를 토글 식으로 화면에 보이거나 사라지게 선택할 수 있습니다.

geogebra_intro_4.png

마지막으로, 수동 애니메이션(?) 기능이 있는데 요것도 좀 재미있습니다. 간단한 실습을 위해 주어진 AB 선분을 2등분 하는 선을 다음과 같이 (미리 도구로 제공하는 "Perpendicular Bisector"를 이용해) 쉽게 작도할 수 있습니다.

geogebra_intro_5.png

그 교점에, 잘 맞춰서 점을 하나 찍어줍니다.

geogebra_intro_6.png

그런데, 점 C의 모양이 점 A, B와는 다소 작고 색상도 다릅니다. 이런 유의 점들은 계산에 의해 정해지는 점으로 사용자가 임의로 이동할 수 없음을 의미하기도 합니다. 실제로 마우스를 이용해 점 C를 클릭하고 누른 채로 이동시킬 수 없지만, 점 A와 점 B는 마우스를 이용해 이동이 가능합니다. 그래서 점 A와 점 B를 자유롭게 이동해도 그에 따라 이등분 선이 유지가 됩니다.

geogebra_intro_7.gif

위의 기하 상태를 "Steps"로 보면 다음과 같습니다.

Point A
Point B
f = Segment A, B
g = Perpendicular Bisector of AB
C = Intersection of g and f

점 A, B는 임의로 정해진 반면, Line인 f, g는 점 A, B에 의해 결정되었고, 점 C는 Line인 g, f에 의해 결정된 것임을 알 수 있습니다. 마지막으로 이렇게 작도한 내용을 ggb 파일로 저장할 수 있는데 "이미지"로써 저장하지 않고 "Steps"를 저장하는 것이기 때문에 다른 사람이 해당 ggb 파일을 열어 "Steps"를 보면서 작도를 쉽게 재현해 볼 수 있습니다.

어떠세요? ^^ 앞으로 수학 책 보면서 나오는 기하 내용은 저렇게 컴퓨터로 작도를 직접 해보면 더 재미있지 않을까요? ^^




GeoGebra 기하 (1) - 수직 이등분선
; https://www.sysnet.pe.kr/2/0/11569

GeoGebra 기하 (2) - 임의의 선분과 특정 점을 지나는 수직선
; https://www.sysnet.pe.kr/2/0/11570

GeoGebra 기하 (3) - 평행선
; https://www.sysnet.pe.kr/2/0/11573

GeoGebra 기하 (4) - 선분을 n 배 늘이는 방법
; https://www.sysnet.pe.kr/2/0/11574

GeoGebra 기하 (5) - 선분을 n 등분하는 방법
; https://www.sysnet.pe.kr/2/0/11575

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

GeoGebra 기하 (7) - 각의 이등분
; https://www.sysnet.pe.kr/2/0/11577

GeoGebra 기하 (8) - 호(Arc)의 이등분
; https://www.sysnet.pe.kr/2/0/11578

GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형
; https://www.sysnet.pe.kr/2/0/11579

GeoGebra 기하 (10) - 직각의 3등분
; https://www.sysnet.pe.kr/2/0/11580

GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분
; https://www.sysnet.pe.kr/2/0/11581

GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원
; https://www.sysnet.pe.kr/2/0/11584

GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원
; https://www.sysnet.pe.kr/2/0/11585

GeoGebra 기하 (14) - 삼각형의 무게 중심
; https://www.sysnet.pe.kr/2/0/11586

GeoGebra 기하 (15) - 삼각형의 수심
; https://www.sysnet.pe.kr/2/0/11590

GeoGebra 기하 (16) - 삼각형의 방심과 방접원
; https://www.sysnet.pe.kr/2/0/11591

GeoGebra 기하 (17) - 각의 복사
; https://www.sysnet.pe.kr/2/0/11593

GeoGebra 기하 (18) - 원의 중심 및 접선
; https://www.sysnet.pe.kr/2/0/11594

GeoGebra 기하 (19) - 두 원의 안과 밖으로 접하는 직선
; https://www.sysnet.pe.kr/2/0/11599

GeoGebra 기하 (20) - 세 점을 지나는 원
; https://www.sysnet.pe.kr/2/0/11600

GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환
; https://www.sysnet.pe.kr/2/0/11601

GeoGebra 기하 (22) - 반전기하학의 원에 관한 반사변환
; https://www.sysnet.pe.kr/2/0/11602

GeoGebra 기하 (23) - sqrt(n) 제곱근
; https://www.sysnet.pe.kr/2/0/11603

GeoGebra 기하 (24) - 정다각형
; https://www.sysnet.pe.kr/2/0/11604




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-02-20 01시06분
Staff Picks: Math Examples
; https://www.desmos.com/math
정성태

... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11632정성태7/28/201827838Graphics: 14. C# - Unity에서 캐릭터가 바라보는 방향을 기준으로 카메라의 위치 이동 및 회전하는 방법
11631정성태7/27/201829798Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기 [1]
11630정성태7/27/201824985개발 환경 구성: 391. (GitHub 등과 직접 연동해) 소스 코드 디버깅을 쉽게 해 주는 SourceLink [3]
11629정성태7/26/201823763.NET Framework: 789. C# 컴파일 옵션 - Check for arithmetic overflow/underflow [2]
11628정성태7/25/201825621Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
11627정성태7/25/201819996개발 환경 구성: 390. C# - 컴파일러 옵션 OSS signing / Public Signing
11626정성태7/25/201818382오류 유형: 471. .C++ 함수를 const로 바꾼 경우 C2440 컴파일 오류가 발생한다면?
11625정성태7/24/201817564Math: 49. GeoGebra 기하 (25) - 타원의 중심점 찾기파일 다운로드1
11624정성태7/24/201821964개발 환경 구성: 389. C# - 재현 가능한 빌드(reproducible builds) == Deterministic builds [4]
11623정성태7/24/201821409Math: 48. C# - 가우시안 함수의 이산형(discrete) 커널 값 생성파일 다운로드1
11622정성태7/23/201821579개발 환경 구성: 388. Windows 환경에서 Octave 패키지 설치하는 방법
11621정성태7/23/201819202VC++: 127. 멤버 함수에 대한 포인터를 외부에서 호출하는 방법파일 다운로드1
11620정성태7/22/201822455Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터 [1]파일 다운로드1
11619정성태7/21/201821496Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
11618정성태7/20/201818556개발 환경 구성: 387. 삼성 오디세이(Odyssey) 노트북의 운영체제를 새로 설치하는 방법
11617정성태7/20/201819348Team Foundation Server: 50. TFS 소스 코드 관리 기능 (5) - "Rollback", "Rollback Entire Changeset"
11616정성태7/17/201818723Graphics: 9. Unity Shader - 전역 변수의 초기화
11615정성태7/17/201823074.NET Framework: 788. RawInput을 이용한 키보드/마우스 입력 모니터링파일 다운로드1
11614정성태7/17/201825255Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
11613정성태7/16/201821574Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
11612정성태7/16/201820572Windows: 148. Windows - Raw Input의 Top level collection 의미
11611정성태7/15/201820795Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
11610정성태7/15/201817320Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
11609정성태7/15/201820238Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
11608정성태7/15/201824881Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
11607정성태7/14/201825211Graphics: 2. Unity로 실습하는 Shader [1]
... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...